CHAP. 10

INTRODUCTION TO VAPOR/LIQUID EQUILIBRIUM.

⇒ THERMODYNAMICS OF SEPARATIONS

BEFORE:

\[
\begin{array}{c}
\alpha \\
\beta
\end{array}
\]

Two phases \(\alpha + \beta\)

Composition of \(\alpha + \beta\) same

(one component)

WHAT ABOUT MULTIPLE COMPONENT SYSTEMS?

NOW:

\[
\begin{array}{c}
\alpha \\
\beta
\end{array}
\]

Two phases \(\alpha + \beta\)

Composition of \(\alpha + \beta\) different

\(y_\alpha \neq x_\beta\)

\[\text{Note: } T_\alpha = T_\beta, \ p_\alpha = p_\beta\]
Expressions for composition:

Vapor Phase:

\[y_i \] (mole or mass fraction)

\[P_i \] (partial pressure)

\[n_i \] (moles component \(i \))

\[m_i \] (mass component \(i \))

\[M = \text{total mass of vapor phase} \]

\[n = \text{total moles of vapor phase} \]

\[y_i = \frac{n_i}{n} \quad \text{mole fraction} \]

\[y_i = \frac{m_i}{M} \quad \text{mass fraction} \]

Gas Phase

\[\Rightarrow \]

Beware: \(\frac{n_i}{n} \neq \frac{m_i}{M} \)

\[\Rightarrow \text{Make sure to check if mass or moles.} \]
Nice thing about mass and mole fractions:

\[\sum_i \frac{n_i}{n} = 1 \quad \text{and} \quad 0 \leq \frac{n_i}{n} \leq 1 \]

\[\sum_i \frac{M_i}{m} = 1 \quad \text{and} \quad 0 \leq \frac{M_i}{m} \leq 1 \]

Finally, Partial Pressure...

\[P_i = y_i \cdot P \quad \text{Total Pressure.} \]

↓ mole fraction of component "i".

AND

\[\sum_i P_i = P \]

How about liquid phase?

\[\chi_i = \frac{n_i}{n} \quad \text{mole fraction} \]

\[\chi_i = \frac{M_i}{m} \quad \text{mass fraction} \]
Beware: \(\frac{n_i}{n} \neq \frac{m_i}{m} \)

Also: \(\sum_i x_i = 1 \) and \(0 \leq x_i \leq 1 \)

Finally: Concentration

If mass:

\[C_i = \frac{m_i}{V} \quad \text{[=]} \quad \frac{\text{mass}}{\text{volume}} \quad (\text{units of } \rho) \]

If moles:

\[C_i = \frac{n_i}{V} \quad \text{[=]} \quad \frac{\text{mol}}{\text{volume}} \quad (\text{units of molar } \rho) \]

In both cases,

\[\sum_i C_i = C_T \quad \text{total concentration} \]

And,

\[M = \sum_i x_i M_i \quad \text{Molar mass of a solution} \]
10.2 THE PHASE RULE: DUHSM'S THEOREM

1) Compositions are intensive \((y_i, x_i, p_i, c_i)\) and extensive \((n_i, m_i)\).

The intensive variable obey the phase rule.

2) Example:

\[F = 2 - T + N \]

If \(F = 2 + T + P \) specified,

then \(c_i, x_i, y_i, p_i \) also set.

10.4 SIMPLE MODELS FOR VLE

We already know \(y_i \neq x_i \) for mixtures. (most cases)

When is this \(y_i = x_i \) the case?
However, \[y_i \propto x_i \]

or

\[y_i = K_i x_i \]

Proportionality constant.

How to get \(K_i \)?

Two simple models.

Raoult's Law:

\[y_i p_i = x_i p_i^{3x+} \quad (i = 1, 2, \ldots, N) \]

\[\Rightarrow K_i = \frac{p_i^{3x+}}{p} \]

Assumptions:
1) Ideal gas
2) Ideal liquid

\[\Rightarrow \text{no interactions} \]
 ASK YOURSELF 2 QUESTIONS.

1) IS THE GAS PHASE IDEAL?
 -> LOW TO MODERATE PRESSURE
 -> LARGE VOLUME

2) IS THE LIQUID PHASE IDEAL?
 -> ANY SPECIFIC INTERACTIONS?
 a) H-Bonding
 b) Pi-Pi: Stacking
 c) Electrostatic
 d) Polar molecules
 e) BIG DIFFERENCES BETWEEN MOLECULES IN SOLUTION.

GOOD EXAMPLE IDEAL SOLUTION;
ALKANES / MIXTURES OF AROMATICS

WHEN NON-IDEAL?
WATER + OTHER H-BONDING MOLECULES
BACK TO RAOULT'S LAW:

\[Y_i \cdot P = X_i \cdot P_i^{\text{sat}} \]

\(Y_i \) mole fraction vapor
\(X_i \) mole fraction liquid
\(P \) total pressure
\(P_i^{\text{sat}} \) vapor pressure pure Component "i"

(Vapor Pressure Pure Component "i" = \(f(T) \) only)

(Antoine Eqn.)

\(\Rightarrow \text{Lots of limitations, but not bad for most things as } X_i \to 1. \)

Dewpoint + Bubblepoint Calculations w/ Raoult's Law:

First, WHAT IS A DEWPOINT?

\(\alpha \) \(\beta \)

\(\alpha \) \(\beta \)

\(\alpha \) = Vapor Phase
\(\beta \) = Liquid Phase

Dewpoint: Last drop of liquid vaporized
First drop of liquid condensed.
Practically: \[V = F \]
\[L = 0 \]

where \(V \) = Volume for Vapor Phase
\(L \) = Volume of Liquid Phase
\(F \) = Total Volume.

Next, what is a Bubble Point?

\[\alpha \] = Vapor Phase
\[\beta \] = Liquid Phase

Bubble point: First bubble of vapor formed

or

Last bubble of vapor condensed.

So, what are Dew Point and Bubble Point calculations?

From Phase Rule:

\[F = 2 - \Pi + N \]
IF $2 \equiv$ COMPOUND + 1 PHASE
(RECALL @ DEW POINT $V = F + L = 0$)

\Rightarrow $F = 2 - 1 + 2 = 3$

\Rightarrow SPECIFY 3 PARAMETERS + ALL OTHER
INTENSIVE VARIABLES ARE FIXED.

WHAT VARIABLES?

x_i, y_i, p, T, where $i = 1 + 2$

\Rightarrow $x_1, y_2, y_1, y_2, p, T \Rightarrow 6$ variables

4 CASES:

1. BUBBLE P:

\Rightarrow WANT COMPOSITION OF FIRST BUBBLE
+ WANT P.

\Rightarrow HAVE SPECIFIED x_1, x_2, T.
2) **DEW P**

Want: \(x_1, x_2, P \)

Have: \(y_1, y_2, T \)

3) **BUBBLE T**

Want: \(y_1, y_2, T \)

Have: \(x_1, x_2, P \)

4) **DEW T**

Want: \(x_1, x_2, T \)

Have: \(y_1, y_2, P \)

Recall: \(y_i P = x_i P_i^{sat} \) (RAOUlT'S LAW)

Write FOR EACH component:

\[y_1 P = x_1 P_1^{sat} \]

\[+ y_2 P = x_2 P_2^{sat} \]

\[P(y_1,y_2) = x_1 P_1^{sat} + x_2 P_2^{sat} \]
\[P = x_1 p_1^{\text{sat}} + x_2 p_2^{\text{sat}} \]

But \(\sum_i x_i = 1 \Rightarrow x_1 + x_2 = 1 \)

Substitute for \(x_2 \)

\[
P = x_1 p_1^{\text{sat}} + (1 - x_1) p_2^{\text{sat}}
\]

\[
P = p_2^{\text{sat}} + x_1 (p_1^{\text{sat}} - p_2^{\text{sat}})
\]

\[
\hat{P} = \frac{1}{\sum_i \left(\frac{y_i}{p_i^{\text{sat}}} \right)}
\]

Note:

\[\text{p}^{\text{sat}} \text{ by Antoine equation} \]

\[\Rightarrow \text{Phase Diagrams for Ideal Gas} \]

\[\neq \text{Ideal Liquid} \]

(See Attached Flow Charts.)

(In Class Exercise)
PX Y (IDEAL GAS/IDEAL LIQUID)

- Raoult's Law Applies
- Antoine Eqn. for p_i^{sat}
- Constant T

1. Calculate $p_1^{sat} + p_2^{sat}$

2. Pick x_1

3. Calculate $P = p_2^{sat} + (p_1^{sat} - p_2^{sat})x_1$

4. Calculate $y_1 = \frac{x_1 p_i^{sat}}{P}$

5. **No**
 - Across x_1 Range?
 - **Yes**
 - Plot $PX Y$ Diagram
 - Plot XY Diagram
TXY (Ideal Gas/Ideal Liquid)

- Raoult's Law Applies
- Antoine Equation for p_i^{sat}
- Constant P

From p_i, calculate $T_i^{sat} + T_2^{sat}$

Pick T

Calculate $p_1^{sat} + p_2^{sat}$

Calculate x_1:

$$x_1 = \frac{p - p_2^{sat}}{p_1^{sat} - p_2^{sat}}$$

Calculate y_1:

$$y_1 = \frac{x_1 p_i^{sat}}{p}$$

Access T range?

No

Yes

Plot TXY Diagram

Plot XY Diagram
WHAT TO DO IF \(T > T_c \)?

(No \(P_{c, sat} \))

\[y_i \rho = x_i \bar{H}_i \]

\(\bar{H}_i \) - Henry's Law Constant

Values of \(\bar{H}_i \) in Table 10.1 (p. 357)

Example 10.2

Assuming that carbonated water contains only \(CO_2(1) \) and \(H_2O(2) \), determine the compositions of the vapor and liquid phases in a sealed can of soda and the pressure exerted on the can at 10°C. Henry's Law constant for \(CO_2 \) in water at 10°C is about 990 bar.

Given: \(x_{CO_2} = 0.01 \).

Phase Rule: \(F = 2 - 2 + 2 = 2 \)

Given: \(T = 283 \text{ K} \)

\(x_{CO_2} = 0.01 \) \(\Rightarrow \) All other intensive variables set.
\[
\text{CO}_2: \quad y_{\text{CO}_2} \cdot P = x_{\text{CO}_2} \cdot P_{\text{CO}_2} \\
\text{H}_2\text{O}: \quad y_{\text{H}_2\text{O}} \cdot P = x_{\text{H}_2\text{O}} \cdot P_{\text{H}_2\text{O}}
\]

\[
P(y_{\text{CO}_2} + y_{\text{H}_2\text{O}}) = x_{\text{CO}_2} \cdot P_{\text{CO}_2} + x_{\text{H}_2\text{O}} \cdot P_{\text{H}_2\text{O}}
\]

\[
= 1
\]

\[
x_{\text{CO}_2} = 0.01 \quad \Rightarrow \quad x_{\text{H}_2\text{O}} = 0.99
\]

\[
P_{\text{CO}_2} = 990 \text{ bar (given)}
\]

\[
P_{\text{H}_2\text{O}} \text{ (steam table at } 10^\circ\text{C)} = 1.227 \text{ kbar}
\]

\[
= 0.01227 \text{ bar}
\]

⇒ Plug + Chug

\[
P = (0.01)(990 \text{ bar}) + (0.99)(0.01227 \text{ bar})
\]

\[
P = 9.912 \text{ bar}
\]
\[y_{\text{CO}_2} = \frac{x_{\text{CO}_2} \cdot P_{\text{CO}_2}}{P} \]

\[= \frac{(0.01)(970 \text{ bar})}{9.912 \text{ bar}} \]

\[y_{\text{CO}_2} = 0.9988 \]

\[\Rightarrow y_{\text{H}_2\text{O}} = 1 - 0.9988 = 0.0012 = y_{\text{H}_2\text{O}} \]

Check: \[y_{\text{H}_2\text{O}} = \frac{(0.79)(0.01227)}{9.912} = 0.0012 \]

Next time: Modified Raoult's Law

(liquid goes non ideal)
VLE by Modified Raoult's Law.

10.5

Low to Moderate Pressure

Non-Ideal Liquid.

\[y_i \rho = x_i \gamma_i \rho_i^{sat} \]

Activity Coefficient

\[K_i = \frac{x_i \rho_i^{sat}}{\rho} \]

\[\rho = \sum_i x_i y_i \rho_i^{sat} \]

or

\[\rho = \frac{1}{\sum_i \left(\frac{y_i}{x_i \rho_i^{sat}} \right)} \]
From Activity Coefficient Model

Simple: (Polynomial)
Margules - 2 Suffix
Van Laar
Margules - 3 Suffix

Local Composition:
Wilson
NRTL

Group Contribution:
UNIFAC
UNIQUEAL

Details in Chap. 12
For the system methanol (1) / methyl acetate (2), the following equations provide a reasonable correlation for the activity coefficients:

\[\ln \gamma_1 = A x_2^2 \]
\[\ln \gamma_2 = A x_1^2 \]

where \(A = 2.771 - 0.00523T \)

\[\ln p_{1\text{sat}} = 16.59158 - \frac{3.643.31}{T - 33.424} \]

\[\ln p_{2\text{sat}} = 14.25326 - \frac{2.665.54}{T - 53.424} \]

where \(T \) is in K and \(p \) is in kPa.

(a) Calculate \(p \) and \(y_1 \) for \(T = 318.15 \text{ K} \) and \(x_1 = 0.25 \)

(b) Calculate \(p \) and \(x_2 \) for \(T = 318.15 \text{ K} \) and \(y_1 = 0.60 \)

(c) Calculate \(T \) and \(y_1 \) for \(p = 101.33 \text{ kPa} \) and \(x_1 = 0.85 \)

(d) Calculate \(T \) and \(x_1 \) for \(p = 101.33 \text{ kPa} \) and \(y_1 = 0.40 \)
(a) Calculate \(P \) and \(y_i \): with \(T = 318.15 \text{K} \) and \(x_i = 0.25 \)

\[x_2 = 0.75 \]

\[A = 2.771 - 0.00523(318.15) = 1.1071 \]

\[\ln x_1 = 1.1071 \cdot x_2 \Rightarrow x_1 = 1.8640 \]

\[\ln x_2 = 1.1071 \cdot x_1 \Rightarrow x_2 = 1.0716 \]

\[P_{1,\text{sat}} = \exp \left\{ \frac{16.59158 - \frac{3.643.31}{318.15 - 33.424}}{318.15 - 33.424} \right\} = 44.51 \text{ kPa} \]

\[P_{2,\text{sat}} = \exp \left\{ \frac{14.25326 - \frac{2.665.54}{318.15 - 53.424}}{318.15 - 53.424} \right\} = 65.64 \text{ kPa} \]

\[P = (0.25)(1.8640)(44.51 \text{ kPa}) + (0.75)(1.0716)(65.64 \text{ kPa}) \]

\[P = 73.5 \text{ kPa} \]

\[y_1 = x_1, \quad \frac{P_{1,\text{sat}}}{P} = \frac{(0.25)(1.8640)(44.71 \text{ kPa})}{(73.5 \text{ kPa})} = 0.282 = y_1 \]

\[y_2 = 1 - y_1 = 0.718 = y_2 \]
(b) Calculate $P + Y_i$ for $T = 318.15$ K

$Y_i = f(Y_i) \Rightarrow$ PROBLEM (Need to iterate)

\[Y_i = 0.60 \Rightarrow Y_2 = 0.40 \]

Procedure:

1) Guess Values for X_i
2) Calculate P
3) Calculate X_i
4) Calculate Y_i
5) Repeat Steps 2-4 until no change in X_i

Equations:

\[
P = \frac{1}{\sum_{i=1}^{4} \left(\frac{Y_i}{X_i P + P} \right)}
\]

\[
P = \frac{1}{\frac{0.6}{44.51 X_1} + \frac{0.4}{65.64 X_2}}
\]

\[
X_1 = \frac{0.6 P}{44.51 X_1}
\]

\[
X_2 = 1 - X_1
\]

\[
Y_1 = \exp \left\{ 1.1071 X_2^2 \right\}
\]

\[
Y_2 = \exp \left\{ 1.1071 X_1^2 \right\}
\]
<table>
<thead>
<tr>
<th>(\gamma_1)</th>
<th>(\gamma_2)</th>
<th>(P)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>51.09</td>
<td>0.689</td>
<td>0.311</td>
</tr>
<tr>
<td>1.113</td>
<td>1.691</td>
<td>63.63</td>
<td>0.771</td>
<td>0.229</td>
</tr>
<tr>
<td>1.060</td>
<td>1.931</td>
<td>63.00</td>
<td>0.801</td>
<td>0.199</td>
</tr>
<tr>
<td>1.045</td>
<td>2.035</td>
<td>62.90</td>
<td>0.811</td>
<td>0.187</td>
</tr>
<tr>
<td>1.040</td>
<td>2.071</td>
<td>62.88</td>
<td>0.815</td>
<td>0.185</td>
</tr>
<tr>
<td>1.037</td>
<td>2.086</td>
<td>62.91</td>
<td>0.816</td>
<td>0.184</td>
</tr>
<tr>
<td>1.038</td>
<td>2.090</td>
<td>62.88</td>
<td>0.817</td>
<td>0.183</td>
</tr>
</tbody>
</table>

Pretty good.

\[P = 62.88 \text{ kPa} \]
\[x_1 = 0.817 \]
\[x_2 = 0.183 \]

(c) Calculate \(T + \gamma_i \): Given \(P = 101.33 \text{ kPa}, x_1 = 0.85 \)

\(\gamma_i = f(T) \): Problem. (Iterative Procedure)

Procedure:
1) Guess \(T \)
2) Calculate \(A \)
3) Calculate \(\gamma_i \)
4) Calculate \(P_{\text{set}} \)
5) Calculate \(P \) (\(P = 101.33 \text{ kPa} \)?)

Initial Based on Weighted \(T \)
<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>δ_1</th>
<th>δ_2</th>
<th>P_1</th>
<th>P_2</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>330.6</td>
<td>1.01</td>
<td>1.023</td>
<td>2.074</td>
<td>76.77</td>
<td>120.50</td>
<td>128.7</td>
</tr>
<tr>
<td>331.0</td>
<td>1.04</td>
<td>1.024</td>
<td>2.120</td>
<td>77.35</td>
<td>104.62</td>
<td>100.6</td>
</tr>
<tr>
<td>331.1</td>
<td>1.039</td>
<td>1.024</td>
<td>2.118</td>
<td>77.16</td>
<td>104.98</td>
<td>100.9</td>
</tr>
<tr>
<td>331.2</td>
<td>1.039</td>
<td>1.024</td>
<td>2.118</td>
<td>77.98</td>
<td>105.35</td>
<td>106.3</td>
</tr>
</tbody>
</table>

\begin{align*}
T_1^{Sat} &= \frac{3.643.31}{16.9158 - \ln(101.33)} + 33.424 = 337.7 \text{ K} \\
T_2^{Sat} &= \frac{2.645.54}{14.25326 - \ln(101.33)} + 53.424 = 330.1 \text{ K}
\end{align*}

Initial Guess $T = 0.85(339.7) + 0.15(336.1) = 336.6 \text{ K}$

\begin{align*}
&\Rightarrow T = 336.2 \text{ K} \\
y_1 = \frac{(0.85)(1024)(77.98 \text{ kK})}{(101.3 \text{ kK})} = 0.67 = y_1 \\
y_2 = 1 - 0.67 \Rightarrow y_2 = 0.33
\end{align*}
(d) Calculate T + x_i
Given $P = 101.33$ kPa + $y_i = 0.40$

$T_1 = 337.7\,\text{K} \quad T_2 = 330.1\,\text{K}$

Initial Guess: $T = 0.4(337.7) + (0.6)(330.1)$

$T = 333.1\,\text{K}$

Don't know x_i => Assume $x_i = 1$ (Guess)

Procedure:
1) Evaluate A_i, P_i^{sat}
 Guess New T
2) Calculate x_i
3) Calculate δ_i
4) Calculate P

$T = 333.1\,\text{K} + \delta_i = 1$, $x_2 = 1$

$\Rightarrow A = 1.029$

$\Rightarrow P_1^{sat} = 84.27\,\text{kPa} \quad P_2^{sat} = 112.44\,\text{kPa}$

$\Rightarrow x_1 = 0.481 \quad x_2 = 0.519$

$\Rightarrow \delta_1 = 1.319 \quad \delta_2 = 1.269$

$\Rightarrow P = 127.52\,\text{kPa} \neq 101.33\,\text{kPa}$

(Lower T)
\[T = 328 \text{ K} \quad \delta_1 = 1.319 \quad \delta_2 = 1.269 \]

\[\Rightarrow A = 1.056 \]

\[\Rightarrow p_1^{\text{sat}} = 68.28 \text{ kPa} \quad p_2^{\text{sat}} = 94.20 \text{ kPa} \]

\[\Rightarrow x_1 = 0.450 \quad x_2 = 0.550 \]

\[\Rightarrow \delta_1 = 1.376 \quad \delta_2 = 1.238 \]

\[\Rightarrow P = 104.42 \text{ kPa} \neq 101.33 \text{ kPa} \quad (\text{Lower } T) \]

\[T = 327 \text{ K} \quad \delta_1 = 1.376 \quad \delta_2 = 1.269 \]

\[\Rightarrow A = 1.061 \]

\[\Rightarrow p_1^{\text{sat}} = 65.46 \text{ kPa} \quad p_2^{\text{sat}} = 90.72 \text{ kPa} \]

\[\Rightarrow x_1 = 0.450 \quad x_2 = 0.550 \]

\[\Rightarrow \delta_1 = 1.378 \quad \delta_2 = 1.240 \]

\[\Rightarrow P = 102.60 \text{ kPa} \neq 101.33 \text{ kPa} \quad (\text{Lower } T) \]
\[T = 326 \text{ K} \quad \delta_1 = 1.378 \quad \delta_2 = 1.240 \]

\[\Rightarrow A = 1.066 \]

\[\Rightarrow p_{1, \text{sat}} = 4.274 \text{ kPa} \]

\[\Rightarrow x_1 = 0.469 \]

\[\Rightarrow y_1 = 1.351 \]

\[\Rightarrow P = 98.63 \text{ kPa} \neq 101.3 \text{ kPa} \]

\[\text{(Increase T)} \]

\[T = 326.7 \text{ K} \quad \delta_1 = 1.351 \quad \delta_2 = 1.264 \]

\[\Rightarrow A = 1.062 \]

\[\Rightarrow p_{1, \text{sat}} = 64.64 \text{ kPa} \]

\[\Rightarrow x_1 = 0.464 \quad x_2 = 0.536 \]

\[\Rightarrow y_1 = 1.357 \quad y_2 = 1.257 \]

\[\boxed{P = 101.3 \text{ kPa}} \]

\[\Rightarrow \begin{cases} x_1 = 0.464 \\ x_2 = 0.536 \end{cases} \]
VLE FROM K-VALUE CORRELATIONS

\[K_i = \frac{y_i}{x_i} \]

\[K_i \text{ from Raoult's Law or Modified Raoult's Law.} \]

\[K_i = \frac{p_i \text{ sat}}{P} \quad \text{RAOUlt'S LAW} \]

(IDEAL GAS/IDEAL LIQUID)

\[K_i = \frac{y_i p_i \text{ sat}}{P} \quad \text{MODIFIED RAOUlt'S LAW} \]

(IDEAL GAS/NON-IDEAL LIQUID)

DePriester CHARTS (BASED ON RAOUlt'S LAW)

(Fig. 10.13 & 10.14)

WHY? \[K_i = f(T, P) \text{ only.} \]

(for RAOUlt'S LAW)
Example 10.4 For a mixture of 10 mol% CH₄, 20 mol% C₂H₆, and 70 mol% C₃H₈ @ 50°F,
Determine:
(a) Dewpoint Pressure
(b) Bubblepoint Pressure

K-values are given in Figure 10.13.

(a) Dewpoint

⇒ Essentially all vapor

⇒ Overall composition \(\approx y_i \)

<table>
<thead>
<tr>
<th>Species</th>
<th>(y_i)</th>
<th>(K_i)</th>
<th>(\frac{y_i}{K_i})</th>
<th>(K_i)</th>
<th>(\frac{y_i}{K_i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>0.1</td>
<td>20</td>
<td>0.005</td>
<td>13.3</td>
<td>0.008</td>
</tr>
<tr>
<td>Ethane</td>
<td>0.2</td>
<td>3.2</td>
<td>0.063</td>
<td>2.2</td>
<td>0.091</td>
</tr>
<tr>
<td>Propane</td>
<td>0.7</td>
<td>0.92</td>
<td>0.761</td>
<td>0.66</td>
<td>1.061</td>
</tr>
</tbody>
</table>

\[
\sum_i x_i = \sum_i \frac{y_i}{K_i} = 1
\]

Higher P

Lower P
From linear interpolation, guess \(P \approx 126 \) psi.

<table>
<thead>
<tr>
<th>Species</th>
<th>(\frac{y_i}{K_i})</th>
<th>(g_i/K_i)</th>
<th>(\frac{y_i}{K_i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>0.1</td>
<td>16</td>
<td>0.006</td>
</tr>
<tr>
<td>Ethane</td>
<td>0.2</td>
<td>2.7</td>
<td>0.074</td>
</tr>
<tr>
<td>Propane</td>
<td>0.7</td>
<td>0.78</td>
<td>0.897</td>
</tr>
</tbody>
</table>

\[
\frac{0.977}{\text{NOT BAD}}
\]

Less than 3% error.

(b) Bubble point

\(\Rightarrow \) Essentially all liquid.

\(\Rightarrow \) Overall composition \(\approx \frac{K_i}{y_i} \)

<table>
<thead>
<tr>
<th>(p = 500) psi</th>
<th>(p = 400) psi</th>
<th>(p = 385) psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Species})</td>
<td>(K_i)</td>
<td>(K_i x_i)</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>0.1</td>
<td>4.2</td>
</tr>
<tr>
<td>(\text{C}_2 \text{H}_6)</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>(\text{C}_3 \text{H}_8)</td>
<td>0.7</td>
<td>0.27</td>
</tr>
</tbody>
</table>

\[
\frac{0.789}{\text{decrease } P}
\]

\[
\begin{array}{c}
\frac{0.927}{\text{slightly lower } P} \\
\frac{0.964}{\text{less than 47% error}}
\end{array}
\]

Next, flash calculations.
Flash Calculations

SINGLE STAGE SEPARATION BASED ON VLE.

\[\begin{align*}
F & \rightarrow \text{Vapor, } y_i \rightarrow V \\
\text{Feed, } z_i & \rightarrow \text{Liquid, } x_i \rightarrow L
\end{align*} \]

@ EQUILIBRIUM \((T, P)\)

What do we usually know?

\(F, z_i, T, P \)

What are looking for?

\(V, L, y_i, x_i \)

Equations:

\[\begin{align*}
\sum_i x_i &= 1 \\
\sum_i y_i &= 1 \\
y_i &= k_i x_i \\
F &= L + V \\
F z_i &= L x_i + V y_i
\end{align*} \]
For ideal gas/ideal liquid

\[K_i = \frac{p_i^{\text{sat}}}{p} \]
\[+ \frac{p_i^{\text{sat}}}{p_i^{\text{sat}}} = f(L) \text{ only} \]

We can combine equations to get one variable in terms of knowns.

Overall:
\[F = L + V \Rightarrow L = F - V \]

Component:
\[z_i F = x_i L + y_i V \]

Substitute:

\[y_i = \frac{1}{V} \left[z_i F - x_i (F - V) \right] \]

\[x_i = \frac{y_i}{K_i} \]

Phase Equilibria:

Substitute,
\[\frac{V}{F} K_i y_i = z_i K_i - y_i \left(1 - \frac{V}{F} \right) \]
\[y_i \left(\frac{V}{F} K_i + 1 - \frac{V}{F} \right) = z_i K_i \]
\[y_i \left(1 + \frac{V}{F} (K_i - 1) \right) = z_i K_i \]
\[y_i = \frac{z_i K_i}{\left(1 + \frac{V}{F} (K_i - 1) \right)} \]

But \[\sum_i y_i = 1 \]
\[1 = \sum_i \left(\frac{z_i K_i}{\left(1 + \frac{V}{F} (K_i - 1) \right)} \right) \]
Example 10.5 The system acetone (1) / acetonitrile (2) / nitromethane (3) at 80 °C and 110 kPa has the overall composition ω_1 = 0.45, ω_2 = 0.35, and ω_3 = 0.20. Assuming that Raoult’s Law is appropriate to this system, determine L, V, x_i, and y_i. The vapor pressures of the pure species at 80 °C are:

\[p_{1}^{\text{sat}} = 195.75 \text{ kPa} \quad p_{2}^{\text{sat}} = 97.84 \text{ kPa} \quad p_{3}^{\text{sat}} = 50.32 \text{ kPa} \]

Solution:

Step 1: Bubble P

All liquid out so \(\omega_i = x_i \)

\[
P_{\text{Bubble}} = x_1 p_{1}^{\text{sat}} + x_2 p_{2}^{\text{sat}} + x_3 p_{3}^{\text{sat}}
\]

\[
= (0.45)(195.75) + (0.35)(97.84) + (0.2)(50.32)
\]

\[P_{\text{bubble}} = 132.4 \text{ kPa} \]

STEP 2: DEW P

All vapor out so \(z_i = y_i \)

\[P_{\text{Dew}} = \frac{1}{\frac{y_1}{p_1} + \frac{y_2}{p_2} + \frac{y_3}{p_3}} \]

\[= \frac{1}{\frac{0.45}{195.75} + \frac{0.35}{97.84} + \frac{0.2}{50.32}} \]

\[P_{\text{Dew}} = 101.5 \text{ kPa} \]

Why calculate \(P_{\text{bubble}} \) and \(P_{\text{Dew}} \)?

Set upper and lower bounds on \(P \).

(Only holds for ideal gas \& ideal liquid)
\[P = 110 \text{ kPa} \Rightarrow \text{2 PHASE} \Rightarrow \text{FLASH} \]

\[K_i = \frac{P_i}{P} \quad \text{(RAOUlt's Law)} \]

\[K_1 = \frac{195.75}{110} = 1.7775 \]

\[K_2 = \frac{97.84}{110} = 0.8895 \]

\[K_3 = \frac{50.32}{110} = 0.4575 \]

Choose basis: \(F = 1 \text{ mol} \)

Now, substitute into FLASH equation:

\[I = \frac{(0.45)(1.7775)}{1 + \frac{V}{I}(1.7775-1)} + \frac{(0.35)(0.8895)}{1 + \frac{V}{I}(0.8895-1)} \]

\[+ \frac{(10.20)(0.4575)}{1 + \frac{V}{I}(0.4575-1)} \]

Solve: \(V = 0.7367 \text{ mol} \)
\[L = F - V = 1 - 0.7367 \]

\[L = 0.2633 \text{ mL} \]

\[y_1 = \frac{(0.45)(1.7795)}{1 + 0.7367(1.7795 - 1)} \Rightarrow y_1 = 0.5087 \]

\[y_2 = \frac{(0.35)(0.8895)}{1 + 0.7367(0.8895 - 1)} \Rightarrow y_2 = 0.3387 \]

\[y_3 = \frac{(0.20)(0.4575)}{1 + 0.7367(0.4575 - 1)} \Rightarrow y_3 = 0.1524 \]

Double Check: \(\sum y_i = 1 \)

From \(K_i \), Calculate \(x_i \)

\[x_1 = 0.2859 \]

\[x_2 = 0.3810 \]

\[x_3 = 0.333 \]

Double Check: \(\sum x_i = 1 \)