CHE 305 – Separation Processes Spring 2010 – In Class Exercise on Single Stages

When the relative volatility is approximately constant, the following equation can be used to generate an XY phase diagram.

$$\mathbf{y}_{1} = \frac{\alpha_{12}\mathbf{x}_{1}}{1 + \mathbf{x}_{1}(\alpha_{12} - 1)}$$

The attached XY phase diagram gives VLE data for the following values of the relative volatility (α_{12}): 2, 4, and 10.

100 moles/hr of an equimolar binary mixture is to be separated in a single stage (flash). Draw the q-lines for operation at the bubble point, 60 % vaporization, and the dew point. Determine the compositions of the exiting liquid and vapor streams at 60% vaporization for each curve.

	Relative Volatility		
Composition	2	4	10
x ₁			
X2			
y1			
y 2			