\[T \equiv J \text{ K} \]

\[M_{AB} = \text{average molecular weight} = \frac{2}{\left(\frac{1}{M_A} \right) + \left(\frac{1}{M_B} \right)} \]

\[\Sigma_V = \text{sum of diffusion volumes from Table 3.1} \]

(SEADER + HENLEY)

\[\Rightarrow \text{Empirical} \Rightarrow \text{Good Estimate (\pm 5\%)} \]

TRENDS + DEPENDENCE ON T + P

1) if small molecules & similar, then \[M_{AB} + \Sigma_V \] will have negligible change.

2) \[D_{AB} \propto \frac{1}{P} \]

3) \[D_{AB} \propto T^{1.75} \]

\[\Rightarrow \text{much higher dependence on } T. \]
Also, have a way to convert $D_{AB}(T_1, P_1)$

$\Rightarrow D_{AB}(T_2, P_2)$

Example: Air (21% O₂, 79% N₂) @ 1 atm, 298 K

$D_{O_2, N_2} =$?

Use Chapman-Enskog

$$D_{AB} = \frac{0.00143 T^{1.75}}{P M_{AB}^{\frac{1}{2}} \left[(\Sigma_v)_{A}^{\frac{1}{2}} + (\Sigma_v)_{B}^{\frac{1}{2}} \right]^2}$$

$$M_{AB} = \frac{2}{\left(\frac{1}{32} \right) + \left(\frac{1}{28} \right)} = 29.8$$

$$(\Sigma_v)_{O_2} = 16.3 \quad (\Sigma_v)_{N_2} = 18.5$$

(from Table 3.1)
\[P = 1 \text{ atm} \]

\[T = 298 \text{ K} \]

\[D_{AB} = \frac{0.00143 \ (298)^{1.75}}{(1 \text{ atm})(298)^{1/2} \left[16.2^{1/3} + 18.5^{1/3} \right]^2} \]

\[D_{AB} = 0.209 \frac{\text{cm}^2}{\text{s}} \quad @ \quad 1 \text{ atm} \]

\[298 \text{ K} \]

\[0_2/\text{N}_2 \]

WHAT IF...

\[P = 2 \text{ atm} \]

\[T = 398 \text{ K} \]

Everything else is the same

\[D_{AB}^\text{new} = D_{AB} \left| \frac{P_1}{P_2} \right| \left(\frac{T_2}{T_1} \right)^{1.75} = 0.174 \frac{\text{cm}^2}{\text{s}} \]

if only \(T \) changed (\(\Rightarrow P = 1 \text{ atm} \))

\[D_{AB}^\text{new} = 0.347 \frac{\text{cm}^2}{\text{s}} \]
Also can use correlations, see p. 101.

Nice thing about gases...

Not a lot of interactions

(large V, low P)

However, Liquids are not so lucky

Liquid diffusivities:

Creeping flow w/ drag on molecules of A.
\[(D_{AB})_{\infty} = \frac{RT}{6\pi \eta B R_A} \]

- \((D_{AB})_{\infty} \):
 - Infinite dilution diffusivity

- \(R \):
 - Gas constant

- \(T \):
 - Temperature (K)

- \(\eta_B \):
 - Viscosity of B

- \(R_A \):
 - Radius of molecule A

- \(\Rightarrow \) No A-A interactions

Lots of limitations here:

- \(\Rightarrow \) Size of A >> Size of B

- \(\Rightarrow \) No interactions A-A

- \(\Rightarrow \) Dilute (very) solution

- \(\Rightarrow \) If diffusion by random motion, tough to do with really large molecules.

(\(+ \) all the interaction with solvent \(B \))
ASIDE:

Notice how nothing is averaged in Stokes-Einstein.
All subscripted for solute or solvent.
(individual component properties)

Consequence:

\[D_{AB} \neq D_{BA} \quad \text{LIQUIDS} \]

Why? Difference in density of A vs. B,

OK... can still calculate \(D_{AB} + D_{BA} \)

Stokes-Einstein can be extended
to include more properties of the mixture. (again, pure component properties, but catch smaller molecules)
MOST COMMONLY USED:

WILKE - CHANG:

Good for dilute solution (< 5 mol%)

Biggest mistake here

\[D_{AB} = \frac{7.4 \times 10^{-8} \left(\Phi_B M_B \right)^{1/2}}{M_B \sqrt{V_A}} \]

Note: No pressure dependence.

\[\Phi_B \] = association parameter \rightarrow Gives measure of interactions

<table>
<thead>
<tr>
<th>(\Phi_B)</th>
<th>Molecule</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>(\text{H}_2\text{O})</td>
</tr>
<tr>
<td>1.9</td>
<td>Methanol</td>
</tr>
<tr>
<td>1.5</td>
<td>Ethanol</td>
</tr>
<tr>
<td>1.0</td>
<td>Benzene, Ether, Heptane</td>
</tr>
</tbody>
</table>
*Note: These are non-dissociating solutes.

(≠ not salts)

\[M_B = \text{molecular weight of solvent} \]

\[T = \text{temperature (K)} \]

\[\mu_B = \text{solvent viscosity (cP)} \]

\[V_A = \text{molar volume @ normal boiling point} \]

\[\text{(cm}^3/\text{mol)} \]

\[D_{AB} = \frac{\text{cm}^2}{s} \]

\[D_{AB} \approx 10^{-6} - 10^{-4} \frac{\text{cm}^2}{s} \quad \text{(binary)} \]

for \(MW < 200 \quad \text{and} \quad \text{viscosity} < 10 \text{cP} \)

Remember, Wilke-Chang for solute concentration less than \(5-10 \text{ mol}\% \).
DISSOCIATING SOLUTES (Ions/Salts)

- Need to look at each ion.

 e.g.: HCl

 \[D_{H^+}, D_{Cl^-} \]

- Electroneutrality must exist

 \(\Rightarrow \text{Total charge} = 0 \)

 \(\Rightarrow \text{Transport of } H^+ \text{ is coupled to transport of } Cl^- \)

\[
D_{12} = \frac{|Z_1| + |Z_2|}{\frac{|Z_1|}{D_1} + \frac{|Z_2|}{D_2}}
\]

Get \(D_1 + D_2 \) from tables.

(e.g., "Diffusion" by E.L. Cussler, 1997)
EXAMPLE: H_2SO_4

$H^+ (1)$

$\Rightarrow Z_1 = +1$

$SO_4^{2-} (2)$

$Z_2 = -2$

From Cussler,

$D_1 = 9.31 \times 10^{-5} \frac{cm^2}{s}$ in water

$D_2 = 1.06 \times 10^{-5} \frac{cm^2}{s}$ @ 25°C

$D_{12} = D_{H_2SO_4} = \frac{|+1| + | -2 |}{\frac{|+1|}{9.31 \times 10^{-5}} + \frac{| -2 |}{1.06 \times 10^{-5}}}$

\[D_{H_2SO_4} = 1.50 \times 10^{-5} \frac{cm^2}{s} \]

SOLIDS:

RANGE: 10^{-4} - $10^{-12} \frac{cm^2}{s}$

Typical gas in polymer: $\sim 10^{-9} \frac{cm^2}{s}$

\Rightarrow MAss transfer in solids **very slow.**
MASS TRANSFER COEFFICIENTS:

FIRST, WHY DO WE NEED THESE?

→ FLOWING SYSTEMS

→ DIFFUSION DISTANCE NOT KNOWN.

EXAMPLES:

1) NON-FLOW w/ B_T KNOWN

&m_capillary

MEMBRANE

BALLOON

HERE, \[N_A = y_a (N_a + N_B) + J_A \]
2) **Flowing Systems w/ B_T unknown**

- **Turbulent Flow**
 - B_T close to wall

- **Laminar Flow**
 - B_T in radial direction

- **Fixed Particle**

- **Particle Flowing**
 - $\vec{V}_{particle} \neq \vec{V}_{fluid}$

- **Air**
 - Evap liq. from large area.

- **Gas Bubbles**
 - Rising in liquid.

\Rightarrow Use $N_A = k_c A \rho_a$
Using mass transfer coefficients...

\[N_A = \frac{R_c}{k_v} \Delta C_A \]

Total molar flux \("A" \)

\[N_A = k_y \Delta Y_A \]

Mole fraction based mass transfer coefficient

Difference?

\(\frac{R_c}{k_v} \)

Based on concentration

\(k_y \)

Based on mole fraction

In both cases, these are mass transfer coefficients.
CONTAIN:
1) DIFFUSIVITY \((D_{AB}) \)
2) DIFFUSION DISTANCE \((B_t) \)

STILL MOLECULAR DIFFUSION

\[\Rightarrow \text{NOT BULK FLOW.} \]

UNITS:

\[R_c = \frac{\text{molar flux}}{\Delta \text{conc}} \]

\[\Rightarrow \frac{\text{mol}}{\text{cm}^2 \cdot \text{s}} \left| \frac{\text{cm}^2}{\text{mol}} \right| \Rightarrow \left| \frac{\text{cm}}{\text{s}} \right| \]

Recall, \(D_{AB} \Rightarrow \frac{\text{cm}^2}{\text{s}} \)

\[k_y \text{ or } k_x : \]

Mole fractions have no units

\[\Rightarrow N_A = k_y \Delta y_A \]
$$k_y [\equiv \frac{\text{mol}}{\text{cm}^2 \cdot \text{s}} \iff \text{same as } N_A]$$

As you might imagine, k_c and k_y are related...

How? DENSITY

Gas Phase:

$$k_y = \frac{k_c \, P}{RT}$$

Liquid Phase:

$$k_x = \frac{k_c \, p_x}{M_{av} \cdot \text{solution density}}$$

average molecular weight
BACK TO GAS PHASE...

Common to use partial pressure

\[k_g = \frac{N_A}{P_{A_i} - P_A} \]

\[\Rightarrow k_g = \frac{k_g}{p} = \frac{k_c}{RT} \]

WHAT IS THE COMMONALITY?

CAN PUT EVERYTHING IN TERMS OF \(k_c \)

\[k_c = \frac{N_A}{C_{A_i} - C_A} = \frac{D_{AB} (C_{A_i} - C_A)}{(z - z_i)} \]

\[\Rightarrow k_c = \frac{D_{AB}}{B_T} \]

NEXT TIME:
- Mass transfer theories
- Correlations for \(k_c \), etc.
MASS TRANSFER THEORIES:

1) FILM THEORY

$$k_c \propto D_{AB}$$

In film theory, B_T is effective film thickness

$B_T = f(Re, D_{AB}, \text{others})$

Note: $B_T \neq$ thickness of laminar layer
2) **Two-Film Theory**: (Changing Phases)

\[y_A \quad \text{interface} \]

\[\text{Discontinuity @ interface} \]

\[y_A^* \quad \text{EQ value} \]

\[y_A \quad \text{GA} \]

\[x_A \quad \text{LIQUID} \]

\[x_{A_i} \quad \text{equilibrium} \]

\[@ \text{interface} \]

\[N_{A_g} = k_y (y_A - y_A^*) \]

WHAT DOES THIS LOOK LIKE?

Distillation
Getting mass transfer resistance at the interface in each phase.

Concentration gradients in both phases.

N_A in each phase toward or away from interface.

Discontinuity at interface.

EQ relationship.

If none \Rightarrow No separation.

(Recall, add a phase to get separation)

How do we use THIS for DESIGN?

Add mass transfer resistances in each phase & take reciprocal to get

OVERALL MASS TRANSFER COEFFICIENT
TRANSFER TO/FROM INTERFACE:

To interface:

\[\Gamma = k_x (x_A - x_{A_i}) \]

From interface:

\[\Gamma = k_y (y_{A_i} - y_A) \]

These are equal.

Why?

MASS CONSERVATION

\[k_x + k_y \] are mass transfer coefficients in the liquid and gas phases, respectively.

CAN ALSO WRITE WITH OVERALL MASS TRANSFER COEFFICIENT:

\[\Gamma = k_y (y^*_A - y_A) \] \(\leq \) EQUILIBRIUM.

DIVIDE BOTH SIDES BY \(r k_y \)

\[\frac{1}{k_y} = \frac{(y^*_A - y_A)}{\Gamma} \]
\[
\frac{1}{K_y} = \frac{(y_A^* - y_{A_i}) + (y_{A_i} - y_A)}{r} \\
\frac{1}{K_y} = \frac{y_A^* - y_{A_i}}{r} + \frac{y_{A_i} - y_A}{r}
\]

Substitute for \(r \)

\[
\frac{1}{K_y} = \frac{(y_A^* - y_{A_i})}{k_x (X_A - X_{A_i})} + \frac{(y_{A_i} - y_A)}{k_y (y_{A_i} - y_A)}
\]

and \(\frac{y_A^* - y_{A_i}}{X_A - X_{A_i}} = \text{slope of eq. line} = m \)

\[
\frac{1}{K_y} = \frac{m}{k_x} + \frac{1}{k_y}
\]

overall resistance

liquid film resistance

gas film resistance
Cases:

1) Liquid resistance controls

\[k_x << k_y \]

\[\Rightarrow \frac{m}{k_x} \gg \frac{1}{k_y} \]

\[\Rightarrow \frac{1}{k_y} \approx \frac{m}{k_x} \quad \Rightarrow \quad k_y \approx \frac{k_x}{m} \]

2) Gas resistance controls

Vice versa

\[k_y \approx k_y \]

Look at rates for each to see what driving force to use.

\[N_A = k_y \left(y_A^* - y_A \right) \]

\[\rightleftharpoons \quad \text{eq} \quad \uparrow \text{bulk} \]

\[\Rightarrow \text{Don't need to know } y \ldots \]
PREDICTING MASS TRANSFER COEFFICIENTS

\[k = f \left(D_{AB}, D, u, \mu, \ell \right) \]

volume diffusivity \(\rightarrow \) linear dimension \(\rightarrow \) density \(\rightarrow \) viscosity

\[\text{velocity} \]

\[\Rightarrow \text{DIMENSIONLESS GROUPS} \]

Reynolds #: \[Re = \frac{Du\ell}{\mu} \]

viscous

Schmidt #: \[Sc = \frac{\mu}{\ell D_{AB}} \]

diffusive

Sherwood #: \[Sh = \frac{Re D}{D_{AB}} \]

mass diffusion

\[Sh = f \left(Re, Sc \right) \]

Based on situation...
CASE 1: MASS TRANSFER w/ FLOW INSIDE PIPES

2) LAMINAR FLOW

GRAETZ #: \(G'_3 = \frac{\dot{m}}{D_{AB} L \rho} = \frac{\dot{m}}{4} \text{Re} Sc \frac{D}{L} \uparrow \text{pipe length} \)

\[Sh = 1.62 \left(G'_3 \right)^{1/3} \]

b) TURBULENT FLOW

\[Sh = 0.023 \text{Re}^{0.8} \text{Sc}^{1/3} \left(\frac{\dot{m}}{\dot{m}_w} \right)^{0.14} \approx 1 \text{ for mass transfer} \]

c) Variations for ranges of Sc

i) \(0.6 \leq Sc \leq 2.5 \)

\[Sh = 0.023 \text{Re}^{0.81} \text{Sc}^{0.44} \]

ii) \(430 \leq Sc \leq 100,000 \)

\[Sh = 0.0096 \text{Re}^{0.913} \text{Sc}^{0.346} \]
EXAMPLE:

\[\text{Flow in pipe with } Re = 10,000 \]

\[\text{Sc} = ? \quad (\text{Sc} = \frac{\mu}{\ell D_{ab}}) \quad (Re = \frac{DuP}{\mu}) \]

\[\text{BT of gas film} = ? \]

\[\text{Need to get } k_c \]

\[\text{Let's fill out the equation.} \]
\[p = \frac{29 \text{ g}}{\text{ mol}} \times \frac{\text{kmol}}{22.4 \text{ mol}} \times \frac{1 \text{ L}}{10^3 \text{ cm}^3} \times \frac{273 \text{ K}}{313 \text{ K}} = 0.00129 \text{ g cm}^3 \] @ STP

\(\Rightarrow \) Need to correct for \(T \)

From App. 8 in McCabe, Smith, & Harriott

\[\mu = 0.019 \text{ cP} \]

\((x = 11, \ y = 20) \)

\[\text{Sc} = \frac{0.019 \text{ cP cm}^3 \text{ s}}{(0.00129 \text{ g})(0.288 \text{ cm}^2)} \times \frac{1 \times 10^{-3} \text{ kg}}{\text{cP m s}} \times \frac{10^3 \text{ g}}{1 \text{ kg}} \times \frac{1 \text{ m}}{100 \text{ cm}} \]

\[\text{Sc} = 0.584 \]

fits case 1c.

\[\text{Sh} = 0.023 \text{ Re}^{0.81} \text{ Sc}^{0.44} \]

\[= 0.023 \times (10,000)^{0.81} \times (0.584)^{0.44} \]

\[\text{Sh} = 31.55 \]
$$\text{but } \text{Sh} = \frac{k_c \cdot D}{D_{AB}} \Rightarrow k_c = \frac{\text{Sh} \cdot D_{AB}}{D}$$

$$k_c = (31.55) \left(0.288 \, \text{cm}^2 \right) \frac{1}{5} \frac{1}{2 \text{ in.}} \frac{1}{2.54 \text{ cm}}$$

$$k_c = 1.79 \, \text{cm} \frac{1}{5}$$

$$k_c = \frac{D_{AB}}{B_T} \Rightarrow B_T = \frac{D_{AB}}{k_c}$$

$$B_T = 0.288 \, \text{cm}^2 \frac{1}{5} \frac{5}{1.79 \text{ cm}}$$

$$B_T = 0.16 \, \text{cm}$$

WHAT IF ETHANOL INSTEAD?

$$D_{AB} = 0.145 \, \text{cm}^2$$

ethanol in air
Sc = \frac{0.019 \text{e}}{(0.001129 \text{ g}) (0.145 \text{ cm}^2)} \left| \frac{1}{100} = 1.16 \right.

Sh = 0.023 (10,000) (1.16) = 42.7

\begin{align*}
R_c &= \frac{Sh D_{AB}}{D} = (42.7) (0.145 \text{ cm}^2) \left(\frac{1}{2 \text{ in}} \right) \left(\frac{1 \text{ in}}{2.54 \text{ cm}} \right) \\
R_c &= 1.22 \text{ cm} \left(\frac{\text{ cm}}{\text{s}} \right)
\end{align*}

B_T = \frac{D_{AB}}{R_c} = 0.145 \text{ cm}^2 \left| \frac{\text{s}}{1.22 \text{ cm}} \right.

B_T = 0.12 \text{ cm}

CASE 2: FLOW OUTSIDE TUBES PARALLEL TO AXIS:

\text{for hollow fiber membrane module}

\begin{align*}
\frac{d_e}{\text{effective diameter}} &= \frac{4 \text{ flow area}}{\text{wetted perimeter}} = 4 \frac{\epsilon}{(4/\pi)(1-\epsilon)} \text{ fiber diameter} \\
\frac{d}{\text{void fraction}} &= \frac{\epsilon}{1-\epsilon} \text{ fiber diameter}
\end{align*}
then use model from above.

\[\text{CASE 3: FLOW NORMAL TO CYLINDERS} \]

\[\text{\rightarrow Single cylinder} \]

\[Sh = 0.61 \, Re^{\frac{1}{2}} \, Sc^{\frac{1}{3}} \]

for \(Re = 10^{-4} \)

\[\text{CASE 4: FLOW NORMAL TO TUBE BUNDLE} \]

\[\text{\rightarrow Varies, but for O}_2 \text{ removal from H}_2\text{O} \]

\[Sh = 1.28 \, Re^{0.4} \, Sc^{0.33} \]

\[\text{CASE 5: FLOW PAST SINGLE SPHERES} \]

\[Sh \rightarrow 2 \quad \text{as} \quad Re \rightarrow 0 \]

\[Re < 1000 \quad Sh = 2.0 + 0.6 \, Re^{\frac{1}{2}} \, Sc^{\frac{1}{3}} \]
CREEPING FLOW

(Low Re, High Peclet # = ReSc)

\[Sh = \left(4.0 + 1.21 \text{Pe}^{2/3} \right)^{1/2} \]

w/ Effective film thickness = \(\frac{D_p}{2} \)

CASE 6: MASS TRANSFER IN PACKED BEDS

\[Sh = 1.17 \text{Re}^{0.585} \text{Sc}^{1/2} \]

Good for beds w/ up to 40-45% voids

for cylindrical particles, use D as characteristic length.

Other correlations for different packings and higher void space

Good for Re > 10
NOTE: PACKED BEDS GIVE MUCH BETTER Sh THAN SINGLE SPHERES.

CASE 7: MASS TRANSFER TO SUSPENDED PARTICLES

\rightarrow use terminal velocity to get Re.

\rightarrow this gives worse case scenario

$k'_c \geq k'_{c\text{,TV}}$.

CASE 8: MASS TRANSFER TO DROPS $+$ BUBBLES

\rightarrow Penetration Theory

$\text{Sh} = 1.13 \text{Re}^{\frac{1}{2}} \text{Sc}^{\frac{1}{2}}$

NEXT TIME: ABSORBERS