SEPARATION PROCESSES

CHAPTER ONE:

TYPICAL CHEMICAL PROCESS

- LARGE SCALE
- ECONOMICAL

EXAMPLES:
1) DISTILLATION
2) ABSORPTION
3) LIQ-LIQ EXTRACTION
4) ADSORPTION
5) MEMBRANES
6) CRYSTALLIZATION

OPERATION: CONTINUOUS, SEMI-CONTINUOUS, BATCH
Processes with only reaction

- complete reaction
- stoichiometric feed
- no side reactions
- no catalyst

Processes with only separation

- clean stream
- low purity products ok (enriched air)
- phase separation

Not very common ⇒ usually have both,

Mixtures:

⇒ In general very stable

Why?

More disorder ⇒ entropy increases

Why are separations difficult (and expensive)?
SEPARATION \Rightarrow ENTROPY \downarrow

(THERMODYNAMICALLY UNFAVORABLE)

\Rightarrow ADD ENERGY \Rightarrow $$$

MECHANISMS FOR SEPARATION OF MIXTURES:

1. PHASES

\Rightarrow CREATE MORE THAN ONE PHASE

\Rightarrow COMPOSITION IN EACH PHASE DIFFERENT

i.e., $X_i \neq Y_i$

(GOVERNED BY THERMODYNAMIC EQUILIBRIUM)

\Rightarrow SEPARATE PHASES

\Rightarrow GENERATE 2 STREAMS, EACH WITH COMPOSITION DIFFERENT FROM FEED.

EXAMPLES: 1) DISTILLATION $\{$(VLE)$\}$

2) ABSORPTION

3) CRYSTALLIZATION $\{$(SLE)$\}$
2. MASS SEPARATING AGENT

- ADD 3rd COMPONENT (USUALLY NEW PHASE)
- MASS TRANSFER TO NEW PHASE

Eg.: LIQ PHASE \rightarrow LIQ PHASE (EXTRACTION)

LIQ/GAS PHASE \rightarrow SOLID PHASE (ADSORPTION)

- IN ALL CASES WANT GOOD CONTACT BETWEEN PHASES
 \Rightarrow MIXING IN LLE

\Rightarrow LARGE SURFACE AREA FOR SOLIDS
3. **Barrier (Membranes)**

![Diagram of selective transport across a membrane]

4. **Solid Agent (~ Packed Beds)**
 - Activated Carbon (Organics in H₂O)
 - Ion Exchange (Ions)

5. **Force Field or Gradient**
 - Imposed Electric Field (Liq)
 - Velocity Gradient (Liq)
 - Pressure (Centrifuge) (Vapor)
 - Electrophoresis (Liq)
EVALUATING THE SEPARATION
(HOW WELL ARE YOU DOING?)

① RATE OF SEPARATION (MASS TRANSFER)
 → GOOD CONTACT
 → T, P, COMPOSITION
 → PHASE (GAS, LIQ, SOLID)

② EXTENT OF SEPARATION (THERMODYNAMICS)
 → DIFFERENCES BETWEEN MOLECULES
 → INTERACTIONS

TO GET A SEPARATION, LOOK FOR ASPECTS THAT
YOU CAN EXPLOIT (PROPERTY DIFFERENCES)

① MOLECULAR PROPERTIES
 MOLECULAR WEIGHT, POLARIZABILITY, DIELECTRIC
 CONSTANT, ELECTRIC CHARGE, MOLECULAR SHAPE,
 RADIUS OF GYRATION, DIPOLE MOMENT

② THERMODYNAMIC PROPERTIES
 VAPOR PRESSURE, ADSORPTIVITY, SOLUBILITY,
 DIFFUSIVITY
More on Mechanisms of Separation

1. Phase Addition / Creation

 a. Energy Separation Agent (ESA)
 → Heat Transfer (Vaporization)
 → Shaft Work (Compression)
 → Lower Pressure (Condensation)

 b. Mass Separation Agent (MSA)
 → Liquid (Clean Solvent)
 → Vapor (Clean Air)
 → Solid (Ion Exchange Resin, Molecular Sieves)

Exercise:
Separations that utilize this mechanism (ESA or MSA, how is phase added/created?)

a. Simple (One Stage)
 Partial Vaporization or Flash Distillation

b. Better Purity (Multiple Stages)
 Distillation ← Most popular in Industry
(c) Not easy to condense (dilute comp. in air) absorption

(d) Dilute component in liquid (+ volatile) stripping

(e) Azeotrope or temperature sensitive
Azeotropic distillation and extraction

(f) Very pure solid product
Crystallization

2. Barriers - Membrane
- Reverse osmosis (ions), pervaporation
 (organics, dehydration), ultrafiltration, gas

3. Solid Agents - Generally batch or semi-continuous
 (finite capacity)
- Adsorption
 \[\text{Low concentration of component to be removed}\]
- **CHROMATOGRAPHY**
 - PACKED COLUMN
 - COLLECT AS FRACTIONS
 - RATE THROUGH COLUMN DIFFERS

- **ION EXCHANGE**
 - CHARGED SPECIES

4. **EXTERNAL FIELD OR GRADIENT**
 - CENTRIFUGE
 - MOLECULAR WEIGHT DIFFERENCE
 - ELECTRODIALYSIS
 - APPLIED ELECTRIC FIELD & MEMBRANE
 - ELECTROPHORESIS
 - APPLIED ELECTRIC FIELD
 - FIELD FLOW FRACTIONATION
 - PARTICLE SEPARATION
ACCOUNTING IN SEPARATIONS

⇒ CONSERVATION OF MASS

HOWEVER, SINCE NO REACTION, MOLES CONSERVED,

NOTE: WE WILL USE MATERIAL BALANCES EXTENSIVELY IN THIS COURSE (CHE 254).

⇒ MOLE FRACTIONS USED COMMONLY
⇒ BEST TO WORK WITH THESE UNLESS OTHERWISE STATED.

SELECTING YOUR SEPARATION PROCESS:

⇒ IN GENERAL GOVERNED BY ECONOMICS

ALSO: A) FEED CONDITIONS

COMPOSITION, FLOW RATE, T, P, PHASE

B) PRODUCT CONDITIONS

PURITY, T, P, PHASE

C) PROPERTY DIFFERENCES THAT CAN BE EXPLOITED: MOLECULAR, THERMO, TRANSPORT

D) CHARACTERISTICS OF SEPARATION OPERATION E.G.: SCALE-UP, STABILITY, T, P, PHASE, SIZE LIMITATIONS, ENERGY REQUIREMENTS.
MOST COMMON:

T, P, PHASE

WHY? CAN BE ALTERED EASILY

A) FEED CONDITIONS

1) COMPOSITION

a) LOW CONCENTRATION SPECIES OF INTEREST
 ⇒ ADSORPTION
 ⇒ MEMBRANES

b) QUALITY OF FEED
 ⇒ EXAMPLE: H$_2$SO$_4$ PRODUCTION

C) TEMPERATURE SENSITIVE
 ⇒ SOLVENT EXTRACTION
 ⇒ E.G.: AROMATICS + SULFUR FROM KEROSENE
 OIL FROM SEEDS (+ FLAVORINGS)
 ⇒ SOLID-LIQ EXTRACTION
2) Flow Rate
 a) Large Flow Rates
 ⇒ Distillation
 ⇒ Absorption

 (Packed bed would be bad. Why? Large ΔP)
 b) Small Flow Rates
 ⇒ Membranes
 ⇒ Adsorption
 ⇒ Batch Separations

3) Temperature
 a) Heat of Vaporization ($¥$)
 ⇒ Distillation
 ⇒ Membranes (Some)
 b) Cooling ($¥$)
 ⇒ Crystallization

4) Pressure
 ⇒ Distillation (~ Atmospheric Pressure)
 ⇒ Membrane (Sea Water Desalination)
 ⇒ Extraction
5) PHASE STATE
 a) GAS
 → ADSORPTION
 → ABSORPTION
 b) LIQUID
 → EXTRACTION
 → DISTILLATION
 c) SOLID
 → EXTRACTION

B) PRODUCT CONDITIONS
 → HOW GOOD DO YOU HAVE TO DO?
 → WHAT CONDITIONS?

1) PURITY
 a) HIGH
 → EXTRACTION
 → ADSORPTION
 b) LOW
 → MEMBRANES

2) TEMPERATURE
 AVoid HEATING/COOLING UNNECESSARILy
3) PRESSURE
 -> AVOID PACKED BEDS
 -> MEMBRANES -> KEEP SPECIES OF INTEREST ON FEED (HIGH PRESSURE) SIDE

 E.g.: FUEL CELL + H₂/CO₂
 SELECTIVELY TRANSPORT CO₂ ACROSS MEMBRANE TO AVOID NEED FOR REPRESSURIZATION OF H₂

4) PHASE
 -> PRODUCT IN CORRECT PHASE

C) PROPERTY DIFFERENCES TO BE EXPLOITED
1) RELATIVE VOLATILITY
 ⇒ DISTILLATION

2) SOLUBILITY
 ⇒ CRYSTALLIZATION, ABSORPTION, EXTRACTION

3) SPECIFIC INTERACTIONS
 ⇒ ADSORPTION, CHROMATOGRAPHY

4) SIZE / MASS
 ⇒ MEMBRANES, CENTRIFUGATION

5) DENSITY
 ⇒ FLOTATION
D) CHARACTERISTICS OF SEPARATION OPERATION

1) EASE OF SCALE-UP

 a) EASIEST: DISTILLATION, ABSORPTION
 b) NEXT EASIEST: EXTRACTION, MEMBRANES
 c) HARDEST: ADSORPTION, CRYSTALLIZATION

 ECONOMY OF SCALE \(\Rightarrow \) \(\text{SIZE} \uparrow \)
 \[\frac{\text{\$$/VOLUME}}{\downarrow} \]
 (TRUE FOR DISTILLATION, ABSORPTION)

 NOT TRUE FOR MEMBRANES \(\Rightarrow \) \(\text{SIZE} \uparrow \)
 \[\frac{\text{\$$/VOLUME}}{\text{CONSTANT}} \]

 WHY? PARALLEL UNITS VS. ONE LARGER UNIT
 (MEMBRANES) (DISTILLATION)

2) EASE OF STAGING

 COLUMN VS. MODULE
 NEED FOR REPRESSURIZATION

3) T, P, COMPOSITION (LIKE BEFORE)

4) SIZE

 E.G.: NAVY SHIP \(\Rightarrow \) LIMITED SPACE
 EXISTING PLANT \(\Rightarrow \) LIMITED SPACE
5) ENERGY

⇒ PHASE CHANGE
⇒ UTILITIES (LOCATION)

OTHER FACTORS:

1) DILUTE PRODUCT ⇒ HIGHER SELLING PRICE
TO BE SEPARATED

⇒ CAN USE EXOTIC SEPARATION (PHARMACEUTICALS)

2) HIGH PURITY ⇒ LARGE # OF STAGES

3) SCALABILITY

SMALL OR BATCH ⇒ MORE EXOTIC
LARGE ⇒ TRADITIONAL

4) MATURITY (+ COMFORT LEVEL)

MOST MATURE

DISTILLATION
ABSORPTION
EXTRACTION

MOST USED

ADSORPTION
ION EXCHANGE
CRYSTALLIZATION

MEMBRANES
CHROMATOGRAPHY

LEAST MATURE

AFFINITY SEPARATIONS

LEAST USED